Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri

نویسندگان

  • Adam M Feist
  • Johannes C M Scholten
  • Bernhard Ø Palsson
  • Fred J Brockman
  • Trey Ideker
چکیده

We present a genome-scale metabolic model for the archaeal methanogen Methanosarcina barkeri. We characterize the metabolic network and compare it to reconstructions from the prokaryotic, eukaryotic and archaeal domains. Using the model in conjunction with constraint-based methods, we simulate the metabolic fluxes and resulting phenotypes induced by different environmental and genetic conditions. This represents the first large-scale simulation of either a methanogen or an archaeal species. Model predictions are validated by comparison to experimental growth measurements and phenotypes of M. barkeri on different substrates. The predicted growth phenotypes for wild type and mutants of the methanogenic pathway have a high level of agreement with experimental findings. We further examine the efficiency of the energy-conserving reactions in the methanogenic pathway, specifically the Ech hydrogenase reaction, and determine a stoichiometry for the nitrogenase reaction. This work demonstrates that a reconstructed metabolic network can serve as an analysis platform to predict cellular phenotypes, characterize methanogenic growth, improve the genome annotation and further uncover the metabolic characteristics of methanogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of methanogenesis by interaction of aluminium ion with co-factor, F-420, in Methanosarcina barkeri.

Methane emission was inhibited by aluminium ion in paddy fields. Addition of Al3+ (20 mM) to the culture medium containing cells of pure Methanosarcina barkeri, inhibited methanogenesis. Methanogenic co-factor, F-420, was isolated and purified from Methanosarcina barkeri MS. Spectrophotometric and spectrofluorometric analysis of interaction between co-factor, F-420, and Al3+ revealed that they ...

متن کامل

The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1

Methanosarcina species are the most metabolically versatile of the methanogenic Archaea and can obtain energy for growth by producing methane via the hydrogenotrophic, acetoclastic or methylotrophic pathways. Methanosarcina barkeri CM1 was isolated from the rumen of a New Zealand Friesian cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phyl...

متن کامل

Uncoupling of Methanogenesis from Growth of Methanosarcina barkeri by Phosphate Limitation.

Production of methane by Methanosarcina barkeri from H(2)-CO(2) was studied in fed-batch culture under phosphate-limiting conditions. A transition in the kinetics of methanogenesis from an exponentially increasing rate to a constant rate was due to depletion of phosphate from the medium. The period of exponentially increasing rate of methanogenesis was extended by increasing the initial concent...

متن کامل

Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A.

Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predict...

متن کامل

Methanogenic cleavage of acetate by lysates of Methanosarcina barkeri.

Cell lysates of acetate-grown Methanosarcina barkeri 227 were found to cleave acetate to CH4 and CO2. The aceticlastic reaction was identified by using radioactive methyl-labeled acetate. Cell lysates decarboxylated acetate in a nitrogen atmosphere, conserving the methyl group in methane. The rate of methanogenesis from acetate in the cell lysates was comparable to that observed with whole cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Systems Biology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006